Putting Pieces Together: Combining FrameNet, VerbNet and WordNet for Robust Semantic Parsing

نویسندگان

  • Lei Shi
  • Rada Mihalcea
چکیده

This paper describes our work in integrating three different lexical resources: FrameNet, VerbNet, and WordNet, into a unified, richer knowledge-base, to the end of enabling more robust semantic parsing. The construction of each of these lexical resources has required many years of laborious human effort, and they all have their strengths and shortcomings. By linking them together, we build an improved resource in which (1) the coverage of FrameNet is extended, (2) the VerbNet lexicon is augmented with frame semantics, and (3) selectional restrictions are implemented using WordNet semantic classes. The synergistic exploitation of various lexical resources is crucial for many complex language processing applications, and we prove it once again effective in building a robust semantic parser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Free-text Semantic Parsing: A Unified Framework Based on FrameNet, VerbNet and PropBank

This article describes a robust semantic parser that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. The FrameNet corpus contains the examples annotated with semantic roles whereas the VerbNet lexicon provides the knowledge about the syntactic behavior of the verbs. We connect VerbNet and FrameNet by mapping the FrameNet frames to th...

متن کامل

Semantic Role Labeling via FrameNet, VerbNet and PropBank

This article describes a robust semantic parser that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. The FrameNet corpus contains the examples annotated with semantic roles whereas the VerbNet lexicon provides the knowledge about the syntactic behavior of the verbs. We connect VerbNet and FrameNet by mapping the FrameNet frames to th...

متن کامل

lemonUby – a large , interlinked , syntactically - rich lexical resource for

We introduce lemonUby, a new lexical resource integrated in the Semantic Web which is the result of converting data extracted from the existing large-scale linked lexical resource UBY to the lemon lexicon model. The following data from UBY were converted: WordNet, FrameNet, VerbNet, English and German Wiktionary, the English and German entries of OmegaWiki, as well as links between pairs of the...

متن کامل

UBY - A Large-Scale Unified Lexical-Semantic Resource Based on LMF

We present UBY, a large-scale lexicalsemantic resource combining a wide range of information from expert-constructed and collaboratively constructed resources for English and German. It currently contains nine resources in two languages: English WordNet, Wiktionary, Wikipedia, FrameNet and VerbNet, German Wikipedia, Wiktionary and GermaNet, and multilingual OmegaWiki modeled according to the LM...

متن کامل

lemonUby - A large, interlinked, syntactically-rich lexical resource for ontologies

We introduce lemonUby, a new lexical resource integrated in the Semantic Web which is the result of converting data extracted from the existing large-scale linked lexical resource UBY to the lemon lexicon model. The following data from UBY were converted: WordNet, FrameNet, VerbNet, English and German Wiktionary, the English and German entries of OmegaWiki, as well as links between pairs of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005